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In the Boussinesq model, which is a standard frame for the analysis of internal-wave 
phenomena, the fluid has variable density but is incompressible, inviscid and 
non-diffusive. Without further approximations, which will not be made here, the 
dynamical equations are nonlinear and the evolutionary problem posed cannot be 
solved explicitly except by numerical means ; but various interesting properties are 
accessible. I n  $ 1, where a previous summary account is recalled (Benjamin 1984), the 
model is reformulated as a system of integro-differential equations in which the 
dependent variables are density p and density-weighted vorticity u. The aim 
subsequently is to survey the model’s mathematical consequences in general rather 
than to examine particular solutions. Very few exact solutions are yet known 
although approximate solutions are on record describing solitary and periodic waves 
of permanent form. 

In  $2 the Hamiltonian representation of the two-component system is noted, being 
the key to much of the analysis that follows. The complete symmetry group for this 
system is given in $3. It is composed of nine one-parameter subgroups which are listed 
first in Theorem 1; then their collective significance in relation to  Hamiltonian 
structure is discussed. I n  $4 two theorems are given specifying necessary and 
sufficient conditions for a scalar function to  be a conserved density for solutions of 
the Boussinesq system. There are found to be basically eight such conserved densities 
which are listed in Theorem 4; and the corresponding conservation laws in integral 
form for motions between horizontal planes are stated in Theorem 5. 

The meaning of impulse according to the Boussinesq model is examined in $5. The 
two linear components of impulse density and the density of impulsive couple are 
revealed by the preceding examination of symmetries and local conservation laws ; 
but care is needed to  identify physical interpretations of the integral conservation 
laws that involve impulse. Two laws relating impulse to kinematic properties of the 
density distribution are particularly strange. Separate treatments are needed for the 
cases where the fluid-filled domain D is the whole of R2, where D is a half-space with 
rigid horizontal boundary (which case is in several respects the most delicate) and 
where D is a horizontal infinite strip. Finally, in $6, a variational characterization 
of steady wave motions is explained as a concomitant of Hamiltonian structure, and 
its implications concerning the stability properties of such motions are reviewed. 

Appendix A notes a semi-Lagrangian formulation which has a simpler Hamiltonian 
structure but a narrower range of application. Appendix B outlines an alternative 
confirmation of Hamiltonian properties by use of a lemma due to Olver (1980b). 
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1. Introduction 
The Boussinesq model is a mathematical prototype which simulates the main 

attributes of internal-wave phenomena in the atmosphere and oceans. The fluid has 
variable density but is taken to  be strictly incompressible, non-diffusive and inviscid. 
So the model bypasses thermodynamic and diffusive effects that determine the basic 
density structure in the geophysical situations simulated. Density variations make 
their effect primarily through buoyancy, and another approximation also commonly 
named after Boussinesq is to  ignore them in accounting for fluid inertia. In  the 
Eulerian equations of motion density p is then treated as a constant except where 
i t  is multiplied by the gravitational acceleration g. This approximation is deceptive, 
however, leading for example to qualitatively false predictions about solitary waves 
in a stratified fluid between horizontal planes (see Benjamin 1966, Appendix), and 
it will not be made in the following analysis. 

For planar motions, which are the only ones to be treated here, the time-dependent 
Boussinesq model is still formidably intricate and the progress of knowledge about 
it has been sporadic over many decades. Notably, Seliger & Whitham (1968, p. 8) 
discovered an ingenious variational principle for i t  in terms of Clebsch variables, and 
they among many other writers commented on the mathematical peculiarity of the 
model. A new approach has been summarized in a recent paper (Benjamin 1984, $5.3; 
henceforth to be denoted B), which took the Boussinesq model as one of several 
examples meant to  demonstrate the advantages of finding Hamiltonian representa- 
tions of hydrodynamic problems. To be reinforced by the discussion that follows, this 
approach appears to give the most robust overall view of the model’s properties, in 
particular identifying in a natural way the appropriate definition of impulse for i t  
and framing all its conservation laws. 

Eight such laws will be given in the present account, most of them for the first 
time, and the opportunity is taken for additional commentary on the material of B. 
The very delicate question of impulse in an unbounded Boussinesq fluid will be 
resolved in $5. Finally, in $6, again adding to the summary account in B, a discussion 
of steady waves in the Boussinesq model is presented. It will be explained that present 
means are well suited to proving the stability of solitary waves in stably stratified 
fluids of great depth, a property strongly suggested by experimental observation but 
not yet explained exactly; however, the hard calculation needed to complete a proof 
is not attempted here. 

From B let us recall the basic equations. Incompressibility of the fluid implies that 
div (u, v)  = 0, where u and w are its velocity components in the horizontal 2-direction 
and (upward) vertical y-direction respectively. Therefore a stream function +(x, y, t )  
exists such that u = $y and v = - @x. The vorticity is 6 = vx-uy = -A+; and a 
suitable strategy for dealing with homogeneous incompressible fluids (cf. B, 885.1 & 
5.2) is to take 5 as a Hamiltonian variable and consider @ as a linear transformation 
of it. Thus $ = ( -A) - l  g with the inverse operator incorporating the boundary 
conditions imposed on $. In  contrast a crucial step in B, $5.3, was to take as the 
first variable the density p and as the second 

say. Since p remains everywhere positive and bounded, the p-dependent linear 
operator L(p) remains strongly elliptic. Hence, according to  the Lax-Milgram theorem 
as noted in B (p. 35) ,  L(p) has, respective to each possible p, a unique inverse 
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incorporating the boundary conditions on 9. As will be made more explicit below, 
we thus have in principle 

9 = B(p)U,  (2) 

where B,q, = L;,$ is for each p a respective symmetric linear operator generally 
transforming measurable functions (from L2( D ) ,  say) into smoother functions. When 
the fluid-filled domain D is the whole of R2, one requires that $ + O  and IV$l -+O as 
r = (x2 + y2)i+ 00 ; and when D is the infinite strip R x (0, h), the additional kinematic 
conditions v = 0 for y = 0 and y = h are covered by requiring 9 = 0 on these two 
rigid boundaries. With corresponding conditions on 9 the representation (2) also holds 
when D is a half-space with rigid boundary y = 0, also when D is any other open, 
simply connected subdomain of R2 with rigid boundaries wherever it is bounded. 

[The meaning of B(p) may be clarified as follows. Multiplying (1) by 9, integrating 
by parts over D and using the boundary conditions, one obtains a quadratic convex 
functional in I# which represents kinetic energy and is continuous in the Sobolev space 
q ( D ) .  Accordingly, 9 given by (2) as a transformation of u may be appreciated as 
the maximizer for the variational principle 

iu$dxdy = max J, (uE-$pplVE12)dxdy, 
D 5 

which defines the quadratic polar functional in u. Here the competitors for the 
maximum can range over Wo(D), and in fact the maximizer has the attribution 
4 E P 0 ( D )  n P ( D )  if merely u E L2(D). Further regularity of II, follows correspondingly 
from that of u. The existence of 9 = B(p) u is ensured by the varied functional on 
the right being upper semi-continuous with respect to weak convergence in IP,(D), 
and its uniqueness is ensured by this functional being anti-convex. Note that whereas 
the boundedness and positivity of p are essential to this recipe, p does not need to 
be continuous.] 

The equation of mass conservation satisfied everywhere in D can be written 

with a ( .  , . ) denoting the Jacobian derivative a( .  , . )/a(x, y). And by elimination of 
pressure from Euler’s equations of motion the equation for u is found to be 

ut +w, $1 + a h  gy -iIV$l2) = 0, (4) 

in which the first two terms on the left represent Du/Dt.  Equations (3) and (4) have 
just two dependent variables, p and u, because 9 is for each t the transformation (2) 
of them qua functions of x, y. Together with initial data p(x, y, 0) and u(x, y, 0), these 
equations compose a Cauchy problem that fully determines the motion for t > 0. In 
common with standard vorticity equations, this formulation circumvents the awkward 
dependence of the original dynamical equations on pressure (cf. B, p. 59). 

Note that (3) and (4) are both in conservation form since the operation a(.  , .) 
evidently generates a divergence. Equation (3) implies p to evolve in the set of 
rearrangements of the bounded positive function p(x, y, 0) (Hardy, Littlewood & P6lya 
1964, chapter lo), which set has many interesting properties. For instance, if the 
measure of D is finite (a necessary qualification since the support of p fills D ) ,  the set 
is strongly closed but not convex and so not weakly closed in any of the spaces LP(D) 
(p 2 1). Then for any measurable function of p its integral over D is a constant of 



448 T. B.  Benjamin 

the motion. Cases where the measure of D is infinite are of greater interest a t  present, 
and then a representative invariant integral associated with (3) is 

where po = po(y) is density in the basic quiescent state of the system. (This is the first 
in a hierarchy of integrals I j  (j  = 1 ,  . . . , 8 )  appearing in statements of conservation 
laws.) The integral (5) can be supposed to converge in the case of a localized motion, 
likewise if the integral is over one period in the case of an x-periodic motion; and 
in either case I, is easily confirmed from (3) to be a constant of the motion. Note that 
l1 is not necessarily zero: allowance is made for the possibility of fluid having been 
added to  or subtracted from the basic state. 

By use of the stated boundary conditions and the assumption that density is 
constant along horizontal plane boundaries, i t  is easy to confirm from (4) that 

is another constant of the motion in the cases that D is unbounded or is bounded 
by horizontal planes. But a(x, y, t )  is generally not a rearrangement of n(x ,  y, 0). A 
characterization of the configuration space in which a evolves will be noted 
incidentally in $6. The invariants (5) and (6) are considered as being representative, 
but in fact they exemplify a more general conservation law to be noted in $4. 

I n  the present discussion attention will be limited to  motions that disturb a state 
of rest. For more general Boussinesq systems in which the quiescent state features 
a non-uniform horizontal current U(  y), a Hamiltonian representation was also 
identified in the previous paper (B, pp. 37 & 38) ; and virtually all the ideas to be 
examined here admit extension to this more intricate case. The dependent variables 
for it are again p and g, the latter representing an addition to the (time-dependent) 
quantity- (pU), which also arises from the first identity in ( l ) ,  but the Hamiltonian 
structure is subtly modified. Remarkably, the components of impulse in such systems 
remain as defined in 994 and 5 below. 

In  Appendix A a simpler Hamiltonian structure will be noted to hold under the 
somewhat restrictive assumption that, for each x, the heights of isopycnic surfaces 
continue to be disposed in the same order as the basic state. In  terms of semi-Lagrangian 
variables, the equations of motion can then be expressed in canonical (Darboux) form. 
But the needed relation between the stream function and the new dependent variables 
is more complicated than ( 1 ) .  

The material of this paper, particularly of $6, has much in common with that of 
a recent paper by Abarbanel et al. (1986; see also Marsden 1976), who examine a t  
length the Hamiltonian structures of both two-dimensional and three-dimensional 
flow problems for incompressible stratified fluids. Their findings are directed mainly 
towards questions about the stability of steady flows. Although the ' Boussinesq 
approximation ' noted in our opening paragraph to be avoided here is adopted by 
them, their longer account is mathematically more complete than the present one, 
whose principal aims are different. Another noteworthy precedent, again with 
different aims and style of treatment, is a paper by Ripa (1981) on symmetries and 
conservation laws for internal waves. 
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2. Hamiltonian representation 

function po of y alone, the total energy I? of the motion is the integral of 
Relative to a stable state of rest in which the mass density is a non-increasing 

H = iPlV$I2+gY(P-Po) (7) 

over D.  Correspondingly, the first (infinitesimal) variation of I? is the integral of 

I-i = P(+IV@l2 + gY) + P V $ W  - PklY --+IV$l2) - $V.(PVfi+PV@). 

The equivalence - means equality except for a divergence which makes no 
contribution to the variation of I?, since by its definition in (2) $ vanishes on the 
boundaries and at  infinity for all p and u (cf. B, p. 35). The second group of terms 
on the right is the same as $c f .  Thus the Euler derivatives of H (i.e. the variational 
derivatives of I?) are seen to be 

dp H = gY-+IV$l2, 8, H = $ = B,,) U. (8) 

The second result is otherwise evident because aplV@12 - +aB(,) u and for fixed p the 
operator B(p) is symmetric in L2(D).t 

Let the solution of (3) and (4) be expressed as the column vector w = [p ,  u ] ~ ;  and 
write dH for [dp H, c3',IIlT. A comparison with (8) then shows (3) and (4) to have 
the (generalized) Hamiltonian representation 

wt = JdH, (9) 

in which the cosymplectic (Hamiltonian) operator is 

This o-dependent matrix of differential operators is skew symmetric in the sense that, 
for any pair of functions F and G E C ~ ( D + R ~ ) ,  the sum F J G + G * J F  equals a 
divergence. $ To establish that (9) is properly a Hamiltonian system, having the 
standard properties of such systems, a closure condition needs to be confirmed. This 
matter can be left aside here, but the needed confirmation will be supplied in 
Appendix B. A few other, more immediately relevant facts about the underlying 
Hamiltonian structure will be noted in $3.3, and they amount virtually to an 
alternative confirmation. 

3. Symmetries 
The complete symmetry group for the system of equations (9) has been found to 

consist of nine one-parameter subgroups. These symmetries can be exposed by a 
systematic calculation of their infinitesimal generators (cf. Olver 1979, 1980a, 1983 ; 
Benjamin & Olver 1982,94), which approach gives assurance that the complete group 

t Note that here the definition of Euler derivatives, familiar from the calculus of variations, is 
conveniently extended to terms depending on non-local (pseudo-differential) operators (cf. B, p. 7,  
$3 and $6). Being very helpful in the interests of concision, this generalization is legitimate on 
the understanding that, for example, c??~ F = GP/Su, where F is the density whose integral over D, 
recovers the functional P whose variational derivative G / G u  is represented. 

t Specifically, {P,(F,G,+FZ G,)+~,F*G2Ix-{P,(F1 G,+F,G,)+flxFzG,I,. 
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has been identified. Such a calculation will be outlined below merely to the extent 
that it illuminates the connection with conservation laws. All the results, to be 
presented first as a theorem, can be confirmed directly by substitution in (9).  

In the theorem the infinitesimal generator of each symmetry is recorded in its 
'standard form ' P (cf. Olver 1980b, $5 )  which will be useful in what follows. The main 
point about P, a two-component function of x, y , t ,  o and derivatives, is that if 
o ( x ,  y ,  t )  is any solution of (9), a continuous family of other solutions B(x ,  y, t ;  E) 

parametrized by inJinitesima1 E E R is obtained by solving 

(11) 

The family of new solutions can be extended to all E E R by exponentiation of the 
infinitesimal generator - or simply by inspection after solving (1 1) and then checking 
the estimate by substitution in (9). Families of new solutions thus obtained are 
recorded in the theorem for all nine subgroups. For the first six examples e denotes 
each additive group parameter; and for each of the last three h = e" > 0 denotes a 
multiplicative parameter. 

- 
0, = P ,  Z(Z, y ,  t ;  0 )  = o ( x ,  y ,  t ) .  

3.1. List of symmetries 

The symmetries are numbered 3 to 11 because the first six of them will presently be 
linked to conservation laws which add to the two already noted in 5 1. Physical 
interpretations associable with the various symmetry groups are also indicated (cf. 
Benjamin & Olver 1982, pp. 148-150). 

Theorem 1. The symmetry group for the two-dimensional Boussinesq system has nine 
one-parameter subgroups G, ( j  = 3 ,  ..., 11) with the following injinitesirnal generators: 

Time translation 

Horizontal translation 

Vertical translation 

Horizontal Galilean boost 

Vertical Galilean boost 

Gravity-compensated rotation 

p, = (Y+~t2)0Z-x0y+r0,gtpylT; 

P9 = to, - gt%, + [O ,  d + 2gtp,]T ; 

P,, = 0 ;  

P,, = xu, + yo, +;to, + [ O ,  *IT.  

Vertical acceleration 

Trivial scaling 

Scaling 
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Newsolutionsobtained bytransforminganygivensolutionw(x, y, t )  with$(x, y, t )  = B(p, u 
are as follows: 

G, :  N z ,  y, t - 4 ,  $(z, y, t - 4 ;  
G, :  4x--B, y, 4 ,  w--, y, t ) ;  

G, : 4z, y- € 7  t), w, y-"7 t )  ; 

G,: 

G,:  
G,:  m ( Z , g , t ) + [ O ,  gt{(l-~oss)p~(Z,~,t)+sinep~(Z,y",t)]~, 

~ ( z +  et, y, t )  + [0, -epPy(z+ d ,  y, t)IT, 

~ ( 2 ,  ~ + d ,  t ) +  [0, -epPz(z ,  y+d,  t)lT, 

$(Z,y",t)-gt{(l-cos~)Z+sin~ y"}, 

@ ( z + B ~ ,  y, t )  - B Y ;  

$(z, y+st ,  t )  +ex; 

with Z = z cose+(y++qP) sine, y" = -z sine+(y+kt2) coss-$t2; 

Gg : [&, y/, A t ) ,  W z ,  yl, A t )  -gt(l - A 2 )  pJz, y', At)]? 
W ( z ,  Y!, t )  + gt(l - AZ) 2, 

with y' = y ++qt2( 1 - h2) ; 

GI, : w z ,  Y, 4 ,  w, y, t )  ; 

G,,: [p (hz ,  hy, hit), hfu(hz, hy, h4t)lT, h-t$(Az, hy, hit). 

It should be acknowledged that the facts here listed are irrespective of boundary 
and initial conditions. Plainly, such conditions cannot increase the number of 
symmetries admitted by any particular problem, and the number will usually be 
reduced a lot. For example, only those labelled 3,4,6 and 10 remain symmetry groups 
when a horizontal rigid boundary is present, and only 3 and 10 when there is a 
boundary that is other than horizontal. All the symmetries identified are nevertheless 
interesting as intrinsic properties of the nonlinear equations (9). In particular, those 
of them that underly conservation laws (see discussion below) constitute physically 
significant information applicable to every Boussinesq problem, whatever the 
boundary and initial conditions. 

The simple symmetry group generated by P5 is perhaps a little surprising at first 
sight since H in (9) depends explicitly on y. The latter fact will be reflected in the 
conservation law linked to G,, but i t  does not influence the symmetry. Although y 
appears in the convenient representation (4) of the equation for a, the second row 
of (9), the term so represented is just gpz which, in common with all other terms in 
(9), is free of explicit dependence on y. 

The nine symmetries given here largely match the nine that have been found for 
the water-wave problem in two space dimensions (Benjamin & Olver 1982, Thm 4.1; 
Olver 1983). Only the trivial scaling symmetry represented by Plo has no obvious 
counterpart in the other problem, where the remaining symmetry of the nine (G, in 
Benjamin & Olver 1982) is tied to mass conservation and so is comparable with the 
present, already noted property that p is a conserved density. The water-wave 
problem in a modified Hamiltonian version (B, 56.1) can in fact be recovered as an 
extreme example of (9): one takes p = 1 for y < q ( z , t ) ,  p = 0 for y > q(x,t), and 
interprets the equations in a distributional sense. But the exercise is complicated and 
has little interest. 
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3.2. Characterization of symmetries 

As Theorem 1 can be verified directly, without recourse to the theory of symmetry 
groups, a full a priori derivation of the Pj would add little to  the present account, 
which concentrates on conservation laws and their interpretation.7 A systematic 
calculation of symmetries is essential to  prove that the list of them in Theorem 1 is 
complete, as seems very likely, but this exacting objective lies beyond present aims. 
It will suffice to  summarize the basic facts about the definition of symmetries and 
their bearing on the Hamiltonian structure of (9), which facts will illuminate the 
results to  be given in $4. 

Consider the infinitesimal generator of a one-parameter symmetry group for (9) to 
be 

which acts on smooth scalar functions of (2, y ,  t , p ,  cr) (cf. Olver 1979; 1980a, $4.3; 
Benjamin & Olver 1952, pp. 156 and 181). The ‘standard representation’ of the 
generator as explained in the context of (1 1 )  is correspondingly 

P = -01w,-/3wy --at + [y,, yz]? (13) 

In common with most applications of Lie group theory to physical problems, it 
appears at present that  the coefficients a, /3 and 7 in (12) and (13) depend on x, y, t 
only. That is, the independent variables are transformed separately from the 
dependent variables; the symmetry group is then called projectable (cf. Olver 1980a, 
$2.4). 

Now, the evolutionary equation (9) for w is not a p.d.e. since the integral operation 
$ = B(p) u is entailed, and this fact evidently colours the meaning of (12) and (13). 
Allowance for i t  has to be made in order to expose transformation properties 
associable with (9) as a Hamiltonian system, and also to  use prolongation theory 
which is the most widely effective method for finding symmetries of p.d.e.s (Olver 
1979; 1980a, $2.3). Such resources are made applicable, however, by the simple 
expedient of allowing explicitly in (12) and (13) for the infinitesimal transformations 
of $, which depend of course upon those of p and u. Thus, a term ra /a$  is added 
to (12), and correspondingly the vector Pgiven by (13) is assigned a third component 
[1c.,],=,, = -a$x-/3+y+7$t+r, which according to ( 1 )  and (11) must satisfy 

- v-{pv( - a$, -p$’y - 7$t + r)i = - auz -pry -rut + yz 

- V* {( - a ~ ,  - - 7 ~ t  + 71) V$>. ( 14) 

Recall that  boundary conditions are not in question here: the model is D = R2. (The 
forms of rrespective to the Pj listed in Theorem 1 are evident from the new solutions 
listed, and are easily checked by (14). They are r, = r, = r, = r,, = 0, 4 = - y ,  

Without going into the mathematical generalities that  are exemplified in the 
following steps (e.g. see Olver 1979; 1980a, chapters 1 and 2; 1980b), let us note the 
Lie bracket whereby the symmetries of (9) can be defined. As an extended collective 
notation for the dependent variables, write w* = [ p ,  u, $IT; and write P* for the 

r, = x, r, = - - ty ,  r, = $-2qtx ,  r,, = -f+.) 

t Such a derivation was included in the first version of this paper, but the general formulae (16) 
and (19) below are more interesting than the detailed calculations. 
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corresponding extension of P including [@J,=, as the third component. Also let Q 
denote the right side of (9) (i.e. ot = Q ) ;  and write Q* = [Q1, Q 2 ,  @JT, although not 
implying that @t has to  be evaluated like Q1 and Q2 in terms of o or a*. Next let 
k be a multi-index labelling all relevant partial derivatives 0: (i = 1 ,2 ,3 )  with 
respect to x, y and t, and let Bk denote the total derivative corresponding to  k (cf. 
Olver 1980b, § 1) .  Then the necessary and sufficient condition for P* to be a symmetry 
of (9) is seen to be that the system of equations 

= [Q*,P*I (15) 

should be satisfied for all a* (cf. Arnold 1978, 539). Here a/at on the left refers to 
explicit dependence on t, and summations are implied by the repeated indices 
i = 1 , 2 , 3  and k. Furthermore a,* = @ must be determined by p and cr according to  
( l ) ,  and P: by P: and P,* according to (14). 

The general condition ( 15) provides the basis for systematically calculating the 
symmetries of (9). Substituting from (13) for P and separating terms in the various 
derivatives of p ,  cr and @, and in combinations of them, one obtains a large number 
of simple differential equations to be simultaneously satisfied by the coefficient 
functions 01, /3, T ,  y1 and y2 (cf. Benjamin & Olver 1982, 54; Olver 1983). The highest 
derivatives are second-order, arising from terms such as pr ykX @xx in Q2. The relation 
(14) delimiting P,* essentially restricts the possibilities, but i t  is found useful that 
y l = a p ,  y2=ba+Apx+Bp,  corresponds to r= (b-a)@-Ax-By if a , b , A , B  
depend only on t. Details of the exercise are not included here, and the nine 
symmetries detected are presented in normalized form as the first part of Theorem 1 .  
The calculations strongly suggest that  there is no other symmetry, but a proof will 
not be attempted. 

It is clear a priori that P,* cannot involve p,  a or their derivatives explicitly, so 
depending only on @ and its derivatives. Thus the third component (the last row) 
of (15) is in effect redundant, even though summation over i = 1 , 2 , 3  in the first group 
terms on the right is essential. Specifically, since the formulation specifies Q,* = @ t ,  

the third component is just 

where gt is the total derivative in t which is basically defined by the sum of the term 
on the left and the transferred terms on the right. So the third equation in (15) is 
satisfied trivially. On this understanding about the meaning of the Lie bracket, the 
condition for P to be a symmetry can be written in the form 

which is the standard one applying to p.d.e.s. When P like Q does not depend 
explicitly on t, the condition (16) means simply that the operations o + Q ( w )  and 
w-+P(o)  commute. 
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3.3. Relation of symmetries to Hamiltonian structure 

First a Poisson bracket associated with (10) must be noted. It composes a o- 
dependent scalar density from any two such densities, say F and G, and is defined 
only within the equivalence classes ignoring divergencies. It is expressed by 

{F ,  G) - bF.JbG N -{G, F) 

- pa(&, F,  Q,, G )  +pa(&, F ,  8, G )  + aa(8, F ,  8, G )  ; (17) 

and a long but straightforward calculation shows that the bracket satisfies the Jacobi 
iden ti t y  

{ E ,  {F,  G>) + { F ,  {G,  El)  + {G,  { E ,  F)> 0. 

The calculation has the same pattern as that in Appendix B where the closure 
condition is confirmed in terms of differential forms, and so in effect it serves as an 
alternative confirmation. 

[In the present uses of (17) ,  the divergences left implicit by - generally turn out 
to have zero integrals over D, as they must to make simple sense of the present 
treatment. For example, on a rigid horizontal boundary (where pz = 0) either 8, F 
or BUG is zero (cf. second footnote on p. 449). Accordingly, by integration of (17) 
over D, a Poisson bracket may also be defined as a functional composed from 
functionals and d. This view, a somewhat more orthodox one, is taken by Abarbanel 
et al. (1986, equation (7.69)) in covering the same ground as (17) - albeit simplified 
by the Boussinesq approximation and approached by use of Clebsch variables.] 

The most important result concerning Hamiltonian structure can now be stated. 
It is the equality 

[JbF,  JbG] = J6{F ,  0, (18) 

were [. , .]is the Lie bracket used in (16) (cf. Olver 1980b, Theorem 4.2). Corresponding 
results are known from studies of simpler Hamiltonian models, such as systems of 
0.d.e.s or of p.d.e.s in canonical Hamiltonian form; but the present example is a 
little unusual in the kind of prolongation that has been needed in defining [. , .]. 
Equation (18) can be verified by a straightforward calculation which involves only 
differentiations of bF and bG, whose possible dependence on non-local operations 
(e.g. when F or G = H )  does not affect the issue. On the left side of the equation these 
Euler derivatives are to  be treated as functions of p,  u and 9 in accord with our 
definition of the Lie bracket. On the right side considerable simplification results 
because the Euler derivative of any divergence is zero, while the second line of (17) 
shows {F, G) to be the sum of p times a divergence and u times another. The two sides 
of the equation are thus found to reduce to  

- [a (p ,a (Q,F ,  &,G)) ,  a(u, a(&, F,  ~ , G ) ) + a ( p , a ~ ~ , ~ , Q , G ) + ~ ( ~ , F ,  Q,G))IT. 

Since (18) can be taken as the basic definition of the Hamiltonian property attributed 
to J (cf. Manin 1979),  this direct proof is yet another alternative to that in Appendix 
B. 

Coming at last to the pivotal property that will be used in 84 to account for 
conservation laws, we combine (16) and (18) with Q = J b H  and with P = JbT, which 
relates a density T to a symmetry group. There thus follows 
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in which (He)o = (H, T)  = b H .  P. Note that (19) is guaranteed only when P is a 
symmetry admitting the representation P = JbT for some T ;  it  is not true for all the 
Pj in Theorem 1. 

4. Conservation laws 
4.1. The simplest examples 

The general property to be noted first covers the invariance of I, and la given by 
(5) and (6). Consider 

(20) 

in which e and f are arbitrary real functions. The term - e(  po) is included to ensure 
that T* has a convergent integral p* over an unbounded D. It is seen from (10) that 
JbT,  = 0, and a simple calculation shows that the only w-dependent densities 
annihilated by the operation J b  have the form (20). The attribute JbT, = 0 implies 
that T* is a conserved density, by which we mean that its total derivative in t is a 
divergence ; for 

Hence, taking account of the implicit divergence and finding its integral over D to 
be zero, provided ps = 0 along the one or two horizontal planes that may bound D, 
we conclude that 

T* = e ( p )  - e ( p 0 )  + V f ( P ) ,  

a , T * = ~ T * * w , = T , . J b H - - b H . J b T ,  = O .  

- 0. -- dT* 
dt 

The properties d1Jdt = 0 and dI,/dt = 0, which (21) evidently includes, are given 
prominence as representative ones in the present account. They are considered the 
most interesting particular cases of (21). But f, in its general form may have 
importance for some purposes. The general property (21) survives the Boussinesq 
approximation, whereby v is replaced by a constant mass density times g = -A$, 
and in this light it is discussed by Abarbanel et al. (1986, $$2 and 7C). 

The facts about T* are consistent with the characterization (19) of symmetries 
related to a density T ,  but they tell us nothing in this regard since the vacuous case 
P = 0 is given. They reflect rather the degeneracy (non-invertibility) of the 
Hamiltonian operator J ,  whose null space is precisely the set of all w-dependent 
two-vectors bT, = [e ’ (p)+af ’ (p) ,  f(p)IT. 

4.2. Adaptation of Noether’s theorem 
A valuable purpose served by identifying the Hamiltonian structure of a dynamical 
problem is to frame a systematic relation between symmetries and conservation laws, 
which relation is usually accessible through Noether’s theorem or some appropriate 
elaboration of it. A version of the theorem applying to Hamiltonian evolutionary 
equations with an arbitrary operator J as in (9) has been given by Olver (1980b, $5), 
being based on the theory of differential forms. His account emphasizes and fully 
explains that not every symmetry, particularly not a scaling symmetry, is necessarily 
linked to a conservation law; and his main result (his Theorem 5.2) is close in gist, 
although not quite suited to, the needs of the present problem. Based on the results 
established in $53.2 and 3.3, however, a wholly adequate analogue of Noether’s 
theorem is provided by the following two theorems. They demonstrate first a 
necessary condition and then sufficient conditions for a scalar function T(x,  y ,  t ,  w )  
to be conserved density. The indicated dependence of T is meant to include 
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dependence on x ,  y ,  t explicitly, on o and its partial derivatives and also on non-local 
transformations of o. 

Theorem 2. Let the scalar function T(x ,  y , t , o )  be a conserved density for solutions 
of (9). Then the two-component function 

P =  JbT (22) 
represents the injinitesimal generator of a symmetry group for (9). 

Proof. The assumption about T means that 

where aT/at refers to explicit dependence on t .  The skew symmetry of J hence implies 

whereupon the operation Jb, which commutes with at in its present sense, gives 

= Jb{H, T). 
a p  
at 
- 

This equation reproduces the characterization of symmetries that  was expressed by 
(19), thus showing P to represent a symmetry group. 

Because J has a non-trivial null space, as appreciated in $4.1, the condition (22) 
is not sufficient for T to be conserved density. Specifically, T may include essential 
terms that depend explicitly on t but are annihilated by Jb, so being unrepresented 
in (22). Sufficient conditions are specified as follows. 

Theorem 3.  Let T(x,  y ,  t ,  o) satisfy 

JbT = P, (22’) 

~p(aT/at)  = gp, (24) 

where P represents a symmetry of (9), and also satisfy 

where p is the coejicient of - w y  in P and By = 0. Then T is a conserved density for 
solutions of (9). 
Proof. The fact that Pgiven by (22’) represents a symmetry implies (19), from which 

(23) now needs to be inferred. Writing out { H ,  T )  = 8H.P in full upon substitution 
from (8) and (13), one sees that the only component whose Euler derivative may lie 
non-trivially in the null space of J is -gypp,,. Since bp( -gypp,) = g ( p +  yp,) ,  this 
term makesno contribution to (19) whenp,, = 0. (The possibility of another such term 
arising from gyy, needs consideration but is easily dismissed upon trial of the requisite 
y1 in (15), which must hold for all p and u.) Since all remaining terms in (23) are 
guaranteed by (19) in the light of (22’), i t  follows that (24) is a sufficient extra 
condition to  guarantee (23). Therefore, using { H ,  T)  - - { T ,  If), we infer 

which confirms T to be a conserved density. 
Theorem 2 is valuable in showing that not all of the symmetries listed in Theorem 1 

can be tied to ordinary conservation laws. It appears that none of the scaling 
symmetries P, -PI, can be represented in the form (22) ; nor can any linear combination 
of them. In particular, the component $7 in the second row of P,, and iP, lies in the 
range of J only in the nugatory case A+ = 0;  and the components of Pll-iPD are 
not divergences. Although the components of P,, - iP9 + 2P,, are divergences, they 
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are still not in the range of J . These scaling symmetries have significance in relation 
to families of solutions, but this aspect is passed over here. 

Functions T,(z,  y, t ,  o) shown by Theorem 3 to be conserved densities are listed as 
follows (cf. Benjamin & Olver 1982, theorem 5.2). The third to eighth T, are numbered 
respective to the P, entailed in the conditions (22') and (24). 

Theorem 4. The two-dimensional Boussinesq system (9) has the following eight 
conserved densities : 

Tl = p-po, 

T, = H [cf. (7)], 

T2 = a, 
T4 = ya, 

T5 = -zn+gt(p-p,)  = -zg+gtTl ,  

T, = x(p-p,)-tyC = zT1-tT4, 

T7 = (y-&t2) ( p  -po)  + tza = (y + g t 2 )  Tl - tT5, 

T8 = -i(z2 + y2) + g t z (  p-po) -*t2ya 

= -+(z2 + y2) +gtTB +$t2T4. 

Each of these conserved densities has a simple physical meaning, to be made clearer 
by the integral identities that follow. In particular, T, relates to energy conservation, 
T4 and T5 to the conservation of horizontal and vertical impulse, about which more 
will be said in 35. T6 and T7 connect kinematic properties of the displaced mass with 
the components of impulse, and T, relates to conservation of angular impulse. Given 
any q, the complete conservation law can easily be found from (9). For example, the 
fourth conservation law is 

(y@t + 5, + r y  = 0 

with 5 = u w + M u 2  - v2)  +kWy(u2 + v2) + SY(P -Po), ) (25) 

7 = vycT+puw-~p,(u2+w2), 

where, as before, u and v should be understood as functional transformations of o 
by virtue of (2). This result will be discussed further in $5. 

The remaining conservation laws comparable with (25) need not be spelled out: 
the mere fact of their existence will suffice for the record. To complete the present 
account, however, integral forms of the eight conservation laws will be noted. Adding 
to the integrals I, and I, introduced in $1, we consider 

1, = J Hdxdy = A (total energy), 
D 

I4 = JDya dz dy (horizontal impulse), 

1 5  = JD ( - za) dz dy (vertical impulse), 

P 

18 = J, { -+(z2+y2) a}dxdy (moment of impulse). 
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The following theorem will refer to localized motions for which each integral 
converges although the measure of D is infinite. Note that the last four are integrals 
of the respective parts of T5-T, not explicitly dependent on t. Note also that 5 and 
are the coordinates of the centroid of the displaced mass, and that gI, represents 

the total potential energy relative to the quiescent state of the system. Finally note 
that I, need not be zero since we allow the possibility of p having a measure 
distribution different from po, to which p converges at large distances; thus the motion 
may be started by the addition of fluid, not merely by stirring up the static 
equilibrium represented by po. 

Taking D to be the infinite strip R x (0, h) bounded by rigid horizontal planes, we 
further need to define the boundary integrals 

c c 

B, = - [ pu]t z dz, B, = - jR [ipuz]t z dz, 

where [ . I t  denotes the difference between evaluations at y = h and y = 0. From the 
definition (1) of u it follows that 

Jb 

14+B6 = JDpudzdy, 

which expresses the total horizontal momentum of the fluid in D; and similarly 

I5 + B, = ID pv dz dy. (27) 

Theorem 5.  For any localized free motion of a heterogeneous, incompressible and 
inviscid jluid between horizontal rigid planes, the eight quantities I j  satisfy 

I, = const., 

I3 = const., 

I, = const., 

I4 = const., 

= -~I,+B, 
dt 

7 = I,+B,, 
dI  
dt 

A detailed proof of this theorem will be omitted, being very straightforward. Upon 
differentiation of each integral I, with respect to t and substitution from (9) for pt 
and ut (or more conveniently for Dp/Dt and DalDt), integrations by parts lead to 
integrated terms that, except for those specified in the theorem, make no contribution 
because v = pz = 0 on the solid boundaries and because various densities such as 
1z( p -po)l and Iz(u, v)l vanish as 1x1 + 00 in the case of a localized motion. The complete 
conservation laws corresponding to the of Theorem 4 are in effect exposed by these 
calculations. 

A version of Theorem 5 applying to z-periodic motions is demonstrable just as 
readily. With all integrals redefined over one period the statement of the Theorem 
is unchanged. Theorem 5 is comparable with Theorem 6.2 in Benjamin & Olver (1982), 
which applies to localized water-wave motions in an infinite ocean lying on a 
horizontal rigid bottom at finite depth ; but there the numbering of the I, is different. 
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The present I, has no distinct counterpart there, and the I, there is a quantity labelled 
viral that is not matched by the Boussinesq system. 

The results in Theorem 5 can be extended to the case that D is the whole of R2, 
and the boundary integrals B, and B, are in fact replaceable by 'zero in the statement 
of the theorem. The meaning of the last five conservative properties then requires 
careful interpretation, however, which aspect will be discussed in 35. It should be 
noted finally that energy conservation as expressed by dl?/dt = 0 holds if D has finite 
rigid boundaries of whatever form, provided only that g and therefore H are 
independent of t explicitly. But total energy is not conserved when g measured in 
the frame (2, y) varies with t ,  as when the fluid fills a rigid container that is vibrated 
vertically. 

5. Impulse 
In  our discussion of the connections between Hamiltonian structure, symmetries 

and conservation laws, the density T4 = yu has been exhibited as the natural 
representative of horizontal impulse for the Boussinesq model. Let us re-introduce 
the notation m, for yu as used in the previous account (B, p. 35). Also, referring to 
Theorem 3 coupled with the fourth entries in Theorems 1 and 4, let us recall its salient 
property to be 

Jbm, = -0,. (28) 

Correspondingly, we recall that 
Jbm, = -ay, 

where m, = -xu is the part of T, that does not depend explicitly on t .  Note that m, 
is not by itself a conserved density, but in relation to Hamiltonian structure and the 
symmetry group G5 it appears to be the natural representative of vertical impulse. 
The physical interpretations of m, and m, will now be examined, together with that 
of -+(x2+ y2) u = N, say, which is the part of T, not explicitly dependent on t and 
will be identified with the impulsive couple for the motion. The following account 
extends Kelvin's original conceptions about impulse, as expounded by Lamb (1932, 
9 152), but care is needed to adapt them to the Boussinesq model. Distinct considera- 
tions apply to the three cases where D is the whole of R2, where D is the upper or 
lower half-space and where D is an infinite strip between rigid horizontal planes. 

In  the first two cases the delicacy of the issues can be appreciated from a discussion 
by Benjamin & Olver (1982, §6.5), who dealt with the components of impulse for 
localized water-wave motions in the case of infinite depth. It was shown that plain 
meanings can then be put on all the conservation laws for water waves only if the 
far-field of the velocity potential has no dipole component oriented in the horizontal 
direction. This necessary condition is physically reasonable because, if it were not 
satisfied, the wave motion would have infinite angular momentum and so could not 
be generated by finite forces acting on any bounded stretch of the free surface. By 
means of a simple example, however (Benjamin & Olver 1982, footnote to p. 175), 
it  was shown how infinite angular velocity is an admissible feature of motions in a 
half-space provided the boundary is rigid : the reaction of an impulsive pressure field 
generating the motion from rest can then impart an infinite impulsive couple. 

5.1. Asymptotic speciJicutions 

To translate this interpretation to the present model, we need to be specific about 
the density distribution at infinity. When D is the upper half-space the most realistic 
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specification is that  p tends to a minimum value p1 > 0 asymptotically as y+ 00 ; and 
when D is the lower half-space p is asymptotic to a maximum p, as y +- 00. These 
specifications are to be combined in the case that D is the whole of Ra. Then in the 
limit T = (zz +y2)t+ cc taken along any ray with B = arctan (y/z) other than 0 or x, 
stratification is disengaged but lim,,p is p1 or p, accordingly as 0 < 8 < x or 

Now, for any localized motion of an incompressible stratified fluid filling R2 or a 
half-space, there can be no monopole velocity field because i t  would entail infinite 
kinetic energy (i.e. 9 - C In ( l / r )  as r+oo is inadmissible). For D = R2, therefore, 
the asymptotic form of the stream function 9 = B(p, u for r + 00 must be 

--x < e < 0. 

Note that a, and a, are the coefficients of horizontally directed dipoles, b, and b, those 
of vertically directed ones. Considering the density of (anticlockwise) angular 
momentum and recalling that (u, w )  = (kU, -$J we deduce from (30) that 

P( .V -P)  P19 (31) 

in the upper half-space and the same with p, in the lower. This asymptotic estimate 
shows plainly that the integrals of p ( m -  yu) over the upper and lower half-spaces 
respectively diverge unless a, = 0 and a,  = 0. But no contribution to total angular 
momentum arises from the terms in b, and b,. 

In the case that D is the upper (respectively lower) half-space, allowance must 
nevertheless be made for the possibility that a, 4 0 (respectively u2 + 0 )  and 
consequently the motion has limitless angular momentum. I n  this case, for example, 
solitary waves are known to be possible, having the far-fields of horizontal dipoles 
(cf. Benjamin 1967, p. 579). Although perhaps surprising a t  first, this fact about 
angular momentum can be explained quite satisfactorily in the way already noted: 
i t  is artificial, of course, but is an intrinsic attribute of mathematical models where 
an incompressible fluid fills a rigidly bounded, two-dimensional half-space. 

5.2. The case D = R2 
I n  this case, on the other hand, infinite angular momentum is unacceptable for 
localized wave motions in the Boussinesq model.? Accordingly, in order to ensure 
cancellation of the infinite positive and negative angular momenta in the upper and 
lower far-fields, (30) and (31) show that the condition 

P l %  = PzU, (32) 

must be satisfied in every realistic example - that  is for every wave motion generated 
by finite forces. 

Another, more obvious special property when D = R2 is implied by (30), that  is 

t It deservesemphasis that an unbounded fluid under gravity is an abstract model, approximating 
practical situations where the bottom of the fluid is far below its density-stratified region. To expose 
the properties most relevant to such cases, the mathematical arguments that follow need to allow 
for limits taken as y+-m in the model; they proceed abstractly irrespective of and without 
controverting the practical necessity of a bottom somewhere. The classic model for waves on deep 
water has just the same character. 
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by the assumption of no monopole far field as is necessary for finite kinetic energy. 
From the definition (1) of cr i t  follows that 

r 

for every bounded D’c R2 with boundary aD’. This contour integral can be 
interpreted as a density-weighted circulation around aD’. Taking D‘ to be a large disk 
centred on the origin, one sees from (30) that for any a, and a, the integral is O(l/r) 
as r+ 00 ; moreover, the condition (32) implies it to be o( l /r)  as r+ 00. Thus, the limit 
of (33) shows the assumption of finite energy to require 

I, = IRz crdxdy = 0. (34) 

Returning momentarily to the case where D is a half-space, however, note that I, 
need not then be zero since circulation can be accumulated along the boundary y = 0.t 

Generalizing the account by Lamb (1932, $152) let us now represent a free motion 
by the fictitious field of impulsive force (X, Y) (2, y, t)  per unit volume that would 
generate it instantaneously from rest. More precisely, at any time t = t o + ,  say, the 
motion (u, v) is appreciated to be as if I(u, v)l = 0 at  t = to- and there were applied 
an external force field (X, Y) (2, y, to) S(t-to), where S is the Dirac distribution. The 
density p of the incompressible fluid is not, of course, affected by this process, and 
an impulsive pressure p ’ ( z ,  y, to) S(t - to) will arise from it. The state of motion thus 
given at  t = to+ requires 

and so cr =-xu+ Y,. (36) 

Further, arbitrary specifications would be required to make (X, Y) and p’ fully 
determinate from (35); but for what follows there is no need to calculate them and 
(35) is a sufficient description. 

The present problem does not allow us in general to bound supp cr. So, in contrast 
with the classic problem of finite vortex systems in an infinite fluid (Lamb, $152), 
it cannot be supposed that X and Yare zero outside some bounded region. However, 
a satisfactorily wide interpretation can be based on the assumption that 
I(X, Y)I = O(i/r3+€) with E > 0 as R+m or, somewhat more generally, that 

xY-yX = O(l/r2+€) as r+m.  (37) 

This assumption is consistent with (36) and (34) for D = R2; and for this case also 
(36) and (37) lead to ,. ” 

r r 

A, = J (-xza)dxdy = 
R2 

l?= {-+(x2+yz)~}dzdy = J (xY-yX)dxdy. 
JR. RZ 

(39) 

t It is at first sight tempting to explain this case consistently with (34) by considering a 
sign-reversed image of u in the rigid boundary. This notion is well known to apply to vorticity in 
homogeneous fluids. But in the present model stratification invalidates such a rationale. 
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To confirm (38) the identity ya = X - (yX), + (y Y ) ,  is integrated over a disk of radius 
r ,  whence the divergence on the right gives a contour integral that  vanishes in the 
limit r+  00 by virtue of (37). The other two results are proved in the same way. 

Thus, for D = W2, the quantity hl (= I,) is shown to be the total horizontal 
impulse imparted to the system by the forces generating the motion. Likewise h2 
(= I,) is the total vertical impulse; and 8 (= I,) is the total impulsive couple. I n  
the present case fi must also equal total angular momentum, whose finiteness is 
ensured by the condition (32). A further interpretation of the integrals on the right 
of (38) and (39) is available from (35), which shows that 

X dz dy = lim { Jb, pu dz dy + $ p’ dy} , 

Y dz dy = lim { j D ,  pv dz dy - gaD, p‘ dz} , 

(41 1 

(42) 

s,, r+w aD‘ 

j.@ r+m 

were D‘ is a disk of radius r .  Each of the four integrals on the right is generally 
indeterminate as r + co, but the given combinations of them must converge to the 
limits hl and h2. In other words, as is well known in the case of homogeneous 
incompressible fluids, impulse can be interpreted - albeit somewhat vaguely - as the 
difference between the total momentum and the reaction of the impulsive pressure 
at  infinity. Confirming a simple fact already mentioned, the corresponding reduction 
of the integral on the right of (40) shows 8 to  equal the integral of yv-xu over R2; 
the related contour integral involving p’ is automatically zero when aD’ is a circle. 

The laws of net impulse conservation included in Theorem 5 can now be extended 
to the case D = R2. In  particular, from the explicit local conservation law (25), an 
integration and a reference to (30) confirms I ,  (= hl) to  be a constant of any free 
motion in R2. It is also easily found in the present case that counterparts of the 
boundary integrals B, and B, in Theorem 5 are zero, so that  we have 

and -- - -g&. d 8  
dt (44) 

On the other hand the equations for I ,  and I ,  are more difficult to adapt and interpret, 
needing special consideration as follows. The corresponding pair of conservation laws 
for water waves also demands careful appraisal (see Benjamin & Olver 1982, 56.5). 

In  the first place, referring to any bounded D‘ c R2, consider the purely kinematic 
iden ti ties 

= J D’ pudzdy+fau zp(vdx-udy). (45) 

In the absence of additional, dynamically irrelevant specifications about conditions 
at  infinity, the first integral on the right does not remain determinate as D’ is 
expanded to fill R2;  and the contour integral is not reducible to the one in (41). 
Writing pu = ya- (ypv), + (ypu), in the first integral, however, we obtain 
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where the first integral on the right remains determinate as D’ -t R2 and its limit fil 
is known to be a constant of the motion. The contour integral can be evaluated 
asymptotically by use of (30), and thus the result from (46) in the limit as D’ +R2 
is found to be 

d I  B= 
dt f i , - - (P1a,+p,a,)*  (47) 

Here I ,  denotes the integral of x( p - po) over R2 and the final terms on the right are 
reducible by (32) to -2xp1al. 

In the same way the result corresponding to the seventh in Theorem 5 is found 
to be 

(48) 
dl, 
- = f i , + 7 0 1 h + P 2 b 2 )  dt 

when D = R2. Here rk, is not in general constant but varies according to (43). 
A simple check on these results is provided by the case of a homogeneous fluid, 

say with p = 1. Then I ,  and I ,  are of course null. But u then reduces to vorticity 
6 = - A 4 ,  whence an application of Green’s theorem shows that the terms on the right 
of (47) cancel (cf. (53) below), as also do those on the right of (48). The results are 
otherwise strange. Although the first term on the right of (47) is constant, the term 
attributable to the dipole far field cannot in general be inferred to remain constant. 
It is in fact only in the case of a homogeneous fluid that, with I ,  = 0, the strength 
of the far field is determined uniquely by the moments fil and fi, of the u-distribution. 
Thus, contrary to what might be expected from offhand comparison with the water- 
wave problem (cf. Benjamin & Olver 1982, eqn. (6.24)), the conservation law (47) does 
not imply that dI,/dt = const.? 

This conclusion may be reinforced by examining the consequences of more precise 
conditions at  infinity, as was done in Benjamin & Olver’s discussion of water waves 
(1982, 56.5). For instance, if aD’ is taken to be a rigid circular boundary whose radius 
r-t 00, the contour integral on the right of (45) is zero. But the requisite modification 
of 4 as r+co (Benjamin & Olver 1982, p. 174) is found to alter the other part of 
the contour integral in (46) so that the result (47) is regained. The final outcome is 
also the same if the boundary at infinity is taken to be compliant in such a way that 
hydrostatic pressure is exactly maintained upon it (Benjamin & Olver 1982, p. 172). 

5.3. The case of a half-space 
As already noted, this case is in several respect more curious than the last. In general 
a,, or respectively a,, is not zero, so that angular momentum is unbounded, and there 
are non-zero counterparts of all the boundary terms B,-B, in Theorem 5. The four 
integrals 11-14 are nevertheless easily confirmed to be constants of any free motion 
in the upper or lower half-space with rigid boundary y = 0; and I4 = f i , representing 
total horizontal impulse is again identifiable as in (38) with the integral of X over D.  
Furthermore, expressions corresponding to (41) and (42) obviously hold for a 
half-space. For horizontal impulse, therefore, the same two-fold interpretation as 
before remains applicable. 

t It is noteworthy that this feature of the conservation law associated with horizontal Galilean 
invariance is not reproduced by the model commonly known as the Benjamin-Ono equation, which 
is an approximation for weakly nonlinear and dispersive long waves in stratified-fluid systems of 
the type treated exactly here (B, Section 3). Localized solutions u of the equation satisfy the simpler 
conservation law (d/dt) j R  ux dx = j R  #uz du = const. This lack of formal correspondence is not 
surprising because the B-0 equation is known to have many conservative properties not shared 
by the exact physical systems that i t  simulates. 
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As regards I ,  = h, the interpretation is less plain. Writing for the upper half-space 
S+ = R x [0, 00) and for the lower S-  = R x ( -  c o , O ] ,  we find from (36), (37) and 
then the respective version of (42) that 

r c c 

Note that for the contour integral aS+ includes the x-axis taken positively, and 8s- 
the x-axis taken negatively. Just as 

dx dy = f J X,,, dx = f J ( p ~ ) ~ , ,  dx 
= Js, R R 

is generally not zero, neither is the last integral on the right of (49), and this 
component of hz has no simple physical meaning. Precisely in keeping with the fifth 
item in Theorem 5 ,  however, the conservation law for net vertical impulse in a 
half-space is found from (9) coupled with (30) to be 

dh,  
- = - gI1 f a( p ~ ~ ) ~ , ,  dx. 
dt R 

In the present case the next two conservation laws are clarified as follows by 
another expression for the dipole far field; and as may be expected it will be confirmed 
that b,, or respectively b, ,  is zero owing to the presence of the rigid horizontal 
boundary. Let us recall from (1 ) that vorticity 6 is related to the dependent variables 
p and u by 

6 = - A 4  = p-1( cr + vp * V 4 )  9 (51) 

where = B,,!a. Let us also recall that when D is either S+ or S-, and the 
boundary conditions @ = 0 on y = 0 and $ + O ,  IV@l +O as r+  co are incorporated, 
the integral operation ( -A) - , :  L2(D) +C(D)  has the Green function 

As r = (x2+y2):+ co for fixed (2, i j ) ,  we hence have 

which establishes two facts of interest. First, on the (already implicit) assumption 
that 6 = O(r-3--a) with 8 > 0, it plainly follows that when D = S+ the dipole 
coefficient a, in (30) is given by 

in which the expression (51) for 6 may be substituted. A corresponding formula for 
a, holds when D = S -  . In the light of (51) these simple formulae highlight that a,, 
or respectively a2, varies with t in nearly all case5.t The second, more helpful fact made 
conspicuous by (52) is that b,, or respectively b,, is always zero when D is a half-space. 

t An exception is when cr is an odd function and p an even function of x at t = 0. Reference to 
(9) shows w to stay in this classification for t > 0, so that a,  or u2 remains zero. 
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In  the same way as (47) was derived for R2, the sixth conservation law for S+ 
is found to be 

- &,-nu,, 
d I  2- 
dt (54) 

and for S- the only change in the statement of the law is that a2 replaces a,. Here 
A, defined as an integral over S+ or S- is constant, but a, or a2 is generally not. 

Next, in consequence of the vertical dipole strength at infinity being zero for a 
half-space, the seventh conservation law corresponding to (48) is found to be 

The integral over R is not absolutely convergent since u(z,O, t) - u,/x2,  or re- 
spectively u2/x2,  as z+& 00 ; but this integral can be confirmed to converge con- 
ditionally by virtue of cancellations in the component integrals over ( - R, 01 and 
(0, R) as I$+ 00. On this understanding about conditional convergence, (55) may be 
combined with (50) to give 

A simple interpretation of this result follows upon recognition from the original 
Euler equations that on y = 0 we have ( P U ) ~  = - (+pu2 +PO*),, where p,* is the pressure 
on the boundary relative to hydrostatic pressure. Hence, with use of the fact that 

da 
lim z~,*(z,  t )  = p,(O) 2 
X+oD dt 

is the same as the limit for x+- 00 (similarly with u2 when D = S-), an integration 
by parts leads to 

7- d21 
dt2 

Notwithstanding that the integral of p: is only conditionally convergent, equation 
(56) makes good sense physically (cf. Benjamin & Olver 1982, eqn. (6.14)). If the excess 
mass I, is non-zero, the left side of (56) can be understood as I, d2jj/dt2. Thus excess 
mass times the vertical acceleration of its centroid is shown to equal a net vertical 
force upwards, namely the total reaction of the boundary to the dynamic pressure 
upon it less the excess weight of the fluid. 

For a half-space, unlike W 2  or an infinite strip, it becomes a sine qua non to present 
the eighth and final conservation law in terms of fl= I8 rather than total angular 
momentum, which is typically unbounded. Note first from (36) and (40) that 

+(z2 + y2) (Xu - Y . )  dx dy 
= 5,* 
= J (zY - yX) dZ dy T $r2X,,, dz. 

S* J, 
Here the first integral on the right has an obvious physical interpretation, but the 
second does not and is incapable of reduction to  anything simpler. (The substitution 
of Xu,, = ( p u + ~ ’ ) ~ - ,  in the integrand tells us nothing because the integrals so 
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obtained are individually meaningless.) From the second row of (9), however, i t  is 
easily shown that 

This result might be expected from the final item in Theorem 5;  and since u - aJx2 
or a2/x2 as 1x1 + co on y = 0, the integral over R is absolutely convergent. Note finally 
that the conservation law (57) cannot be translated into terms of the moment of 
dynamic pressure on the boundary, as might a t  first sight seem feasible (see (60) 
below). In  fact the integral of xpz over R typically does not exist. 

5.4. Motions between horizontal boundaries 

The integral conservation laws for this case have been listed in Theorem 5, but three 
points of interpretation deserve attention regarding impulse. Note first that whereas 
total horizontal impulse I ,  = is a constant of any free motion, total horizontal 
momentum as given by (26) is not, even though in the present case i t  remains always 
determinate for localized motions. This curious fact about the Boussinesq model 
accords with our conclusion that dI,/dt is not constant for typical motions in R2 or 
a half-space, and it is certainly not in conflict with general dynamical principles - as 
might perhaps appear at first sight. It can be explained as follows. 

Differentiating the boundary integral B, in the identity (26) and using the 
x-component of the Euler equations, one obtains 

dB6 dt = h at(pu)y-o dz  = --h JR ar(+pu2+p*)y,odx = h(p!,-pz). (58) 
- s, 

Here p$ and p? Q) are the pressure levels as x + 00 and x + - 00 relative to hydrostatic 
pressure in the quiescent state of the whole system ; and while only their difference 
can have any dynamic significance there is no reason in general for i t  to be zero or 
take any other constant value. Horizontal impulse is invariant according to  the fourth 
item of Theorem 5, which in view of (26) implies the invariance of hoiizontal 
momentum minus the integral of the force (58)  with respect to  time. (This property 
also follows immediately from an integration of the Euler equation over the infinite 
strip.) But the two quantities whose difference thus recovers I4 are not required 
separately to be invariant. The sixth item of Theorem 5 shows that d16/dt equals 
horizontal momentum and so is generally not constant for a heterogeneous fluid. The 
case of a homogeneous fluid is exceptional, however, because I ,  and horizontal 
momentum are then null quantities; hence, because I4 is still invariant in this case, 
(58) implies that pz = p?, permanently. 

To conclude let us note alternative forms of the seventh and eighth conservation 
laws with boundary integrals expressed in terms of the dynamic pressurep*. It should 
again be appreciated that, except for an arbitrary additional function oft alone which 
has no effect on the present results, p* is determined by the Euler equations and thus 
can be considered as a functional transformation of the Hamiltonian variables p and 
r which determine @. Combining the seventh and fifth items in Theorem 5 and using 

t For any localized motion of a homogeneous incompressible fluid between parallel planes, total 
momentum must be zero by virtue of the condition u,+vu = 0. B u t  i t  evidently can be non-zero 
for a heterogeneous incompressible fluid. 
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the Euler equations to  reduce the boundary terms, or proceeding directly from the 
latter, one obtains 

'I- - - gIl - s, [13*]: dx. d21 
dt2 (59) 

The integral of the difference in dynamic pressure between top and bottom can be 
presumed to converge, although of course the integral of either pressure typically does 
not exist. The result (59) has an obvious physical interpretation as exemplified after 

The form of the final conservation law given in Theorem 5 is the simplest in relation 
to Hamiltonian structure, but for this law too an equivalent form exposing its 
physical meaning is found upon the introduction of p* by means of the Euler 
equations. Writing N = xv-yu - (?jr2pv),+ ( ? j r . " p ~ ) ~  in the given form, integrating by 
parts and then using the Euler equations, or proceeding directly from the latter, one 
obtains 

(56). 

As can be expected, the rate of change of total (anticlockwise) angular momentum 
is thus shown to equal the net couple composed of the excess weight of the fluid and 
the difference of dynamic pressures on the boundaries. 

6. Steady waves 
The simplest group-invariant solutions of (9) are periodic and solitary waves of 

permanent form travelling at a constant velocity c in the x-direction, so that 
w = o ( x - c t ,  y). The variational characterization of such motions was reviewed 
abstractly in B (54.2) for the case where, as in (9), the Hamiltonian operator J is 
o-dependent. Several details of the present example deserve to be noted, however, 
particularly since an interesting practical application is in prospect. 

Because at = -cox for steady waves, a combination of (9) and (28) shows them 
to be solutions of 

J&(H-cm,) = 0, (61) 

which is the Euler-Lagrange equation for a variational principle of special type. 
Recall that 8 H  is given by (8) and &ml = [0, ylT. Here, attention will be concentrated 
on the principle itself, but it should first be acknowledged that (61) is a concise 
representation of steady-wave equations that are otherwise well known. The first row 
of (61) is a ( p ,  $-cy) = 0 and so implies p to be a function of Y = $-cy alone, which 
variable is the stream function in a frame of reference moving with the wave. The 
second row regains the equation for Y discovered by Dubreil-Jacotin (1935), as 
studied by Long (1953), Yih (1965, chapter 3) and many others. For details of the 
latter implication reference may be made to B (p. 36). 

To appreciate the variational principle, observe first that (61) is a pair of scalar 
equations for the Hamiltonian variables p and u, not for $ which is still reckoned 
as the transformation B(p) u of these variables. Note also that t-dependence can be 
left implicit in (61) : a solution found as o(x, y) provides a solution o(x-cct, y) of (9). 
Accordingly, relative to a particular solution rB = [ p ,  i?IT of (61), consider the class 
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(semigroup) ‘% of varied functions o(x,  y; 5 )  defined as follows. With parameter 5 2 0 
these functions are solutions of the linear Cauchy problems 

O, = - J ( o ) A ,  ~ ( 0 )  = W, 
in which A = [A,,uIT is a continuously differentiable, bounded but otherwise arbitrary 
function of x, y and 5 . t  In components these infinitely various problems are shown 
by (10) to be 

and solutions will be supposed representable by successive approximations in powers 
of 5 .  Thus we consider p(5) = p + ~ p + $ ~ p ’ +  ... and similarly for a(5), recognizing the 
first (infinitesimal) variation of o to have components 

Here 

for all s 2 0 

= A(0) and p = O(0) denote arbitrary functions of x, y alone. 
Now consider the functional A- chl evaluated in this class of variations. We have 

(64) 
d 
- (A-cfi1) = JD {Ip(H-cm,)p~+€‘,(H-cml)aS}dzdy. 
ds 

So the first variation is given by 

d [& (A-Cfil)] = J [ € ‘ , ( H - c m l ) a ( P , , u . ) + I , ( H - c m , ) { a ( P , h ) + a ( a , ~ ) } l ~ d y ,  
8-0 D 

where everything including A and ,u in the integrand is evaluated at 5 = 0 but the 
bar notation is now suppressed without risk of confusion. Substituting from (8) for 
the Euler derivatives, using the skew symmetry of the operations a(p, .) and a(v, .)  
[see preceding footnote] and requiring the first variation to vanish, we obtain 

[ha( P 9 II. - CY) + ,u{a(~,  II. - CY 1 + a ( P ,  SY - alV$l”}l dx dY . (65) O = J D  
Since A and ,u are arbitrary continuous functions, the Du Bois-Reymond lemma of 
the calculus of variations therefore shows (61) to be implied by a stationary value 
of 8-chl in the specified class of variations, namely the class V decided by 
symplectic structure. The stationary property for variations determined by A 
recovers the equation for p already noted to constitute the first component of (61). 
The same property respecting ,u gives the second component 

a(g,II.-cY)+a(P,SY--alV~12) = 0, 

t For what follows it is unnecessary to impose boundary or asymptotic conditions on the 
component test functions h and p.  Properties of pz and $ suffice to ensure, as is needed, that 
C(H-cm,) .  JA + A  -JB(H-cm,) - 0 since it is the divergence of a vector function vanishing on 
horizontal plane boundaries, or as r -+ a) when D = W2. Further regularity of the test functions 
would be required to define weak, distributional solutions of (61) ; but this aspect will not be covered 
here. 
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which has been noted to reproduce the well-known equation of Dubreil-Jacotin and 
Long. 

This variational principle, that steady wave motions realize stationary values of 
8 - c h 1  with c prescribed, has interest but is not the most useful characterization of 
such motions. Various difficulties attending it can at once be appreciated. The null 
solution of (61) is an extremal; at least one other 2-independent solution generally 
exists representing a conjugateflow relative to the null state (B, $4.4); and solutions 
representing waves are found to  be minimax extremals of Morse type different from 
those of the other two. 

An alternative and prospectively much more useful characterization is that  steady 
waves realize stationary values of A for given values of A,, in which case the wave 
velocity c enters as Lagrange multiplier. It appears that  conditional minima are then 
mainly in question. Periodic waves with given wavelength presumably realize minima 
of 8, defined as an integral over one period, for given h1 similarly defined and for 
variations among periodic functions in the class V as has been explained. There will 
always be an 2-independent conditional extremal for each h,, but this conjugate-flow 
solution will not be minimal if the prescribed period is large enough. Presumably also, 
solitary waves if they exist in a particular Boussinesq model realize minimal energy 
8 for a given impulse hl, when both are defined for functions of unbounded support. 
A similar characterization is already known to apply to solitary and periodic water 
waves in a uniform channel (Benjamin 1972, Appendix C; 1974, $2); but the 
variational principle is simpler, at least superficially, because the Hamiltonian 
structure is so. 

An important point regarding the interpretation of internal-wave phenomena 
concerns the stability of any steady motion shown to be a conditional minimizer in 
the sense described. The class V of variations defined by (62) covers the set of 
instantaneous realizations of w in any free motion neighbouring the steady one in 
question, and the functionals 8 and hl are constants of the motion. I n  other words, 
when according to  (62) 0 is perturbed to w(s) = w*(z ,  y), say, which is taken as initial 
datum for (9) at t = 0, the motion w(z ,  y ,  t )  for t > 0 stays in W (as a comparison 
between (62) and (9) plainly shows) and maintains the same and hl as a,. So, if 
H(a) is a conditional minimum, the number ( 8 - c h l )  (a*) - ( 8 - c h 1 )  (a) = O(s2) 
qualifies as an invariant, non-negative Lyapunov functional, and stability in some 
sense is implied. This general idea in relation to  hydrodynamic stability was 
propounded in a series of powerful papers by V. I. Arnold during the 19609, and i t  
had antecedents in Kelvin’s writings on vortex motion. 

The inference of stability associated with conditional minima is thus immediately 
plausible. It has to be acknowledged, however, that  proof of the stability property 
is far from straightforward, even in simpler comparable examples. A prototype for 
what needs to be done can be found in papers by Benjamin (1972) and Bona (1975). 
As a first step towards fulfilling the Lyapunov criterion of stability, the property 

l ( 8 - c h l )  ( w * ) - ( 8 - c h I )  (t5)1+0 as d,(G,w,)+O (66) 

referred to  initial data is comparatively easy to  establish for any reasonable metric 
dl ( .  , .). The number on the left in (66) will be O(s2) with and generalization 
to a metric neighbourhood of t5 can usually be accomplished by use of the triangle 
inequality for d, (see the cited papers). 

The remaining, more difficult task is to show that for general w the number on the 
left, which is a constant of the motion fort > 0, majorizes some suitable chosen metric 
distance d , ( a ,  a). Note that any translational invariant metric, such as one based 



470 T. B. Benjamin 

on an unweighted norm, will elude the required property, because there will always 
be motions initially close to  the steady wave that gradually diverge from it although 
remaining nearly the same in overall form. For example, another steady wave having 
phase velocity slightly different from c will do so. Therefore d, must be specified to 
measure distance between W and w in some quotient class given by factorization of 
translations (again see the cited papers for details of this principle). 

It is also difficult to prove that any non-trivial W realizes a conditional minimum. 
Analysis of the second and higher variations of l? for given h, becomes very 
complicated, and I have not yet succeeded in completing the work for any specific 
non-trivial example. For the second variation at least, the gist of the theory is 
nevertheless clear enough. From (62) one obtains 

6 = a(p7pU)+a(P7y6)? 

c? = 4 +a(d., p )  + A,) + a(a, ps), 

with everything on the right evaluated at s = 0 and with 6 and d given by (63). The 
terms involving y, and A, have the same form asp  and d, so they make no contribution 
to the conditional second variation of l? as derived from (64). This second variation 
is in fact the integral of 

H- cm, = (@ -cy) d+ $kd-pV@-.V$k +;p(gy-;Iv@-(2), (67) 

where $k = B , , , { d + V . ( p V ~ ) } ,  and the (isoperimetric) condition restricts h and p to 
be such that the integral of m, = yd be zero. Note that the conditional second 
variation of l? vanishes for p = ps, p’ = pxx, d = ax, c? = nx., which case corresponds 
to  a simple translation of i5 and is generated by A = 0, p = y. This obvious fact is 
a reminder that the total variation of Z? can be positive definite, as needed to establish 
Lyapunov stability, only if translations are somehow excluded from competition. 

Substituting forp, p, d and d in (67) and integrating over D ,  one obtains a quadratic 
functional of h and p which can be simplified marginally by use of the equations for 

and 3. The result is still fearsomely complex and will not be quoted in the absence 
of any successful application. 

An outstanding candidate for exact treatment on these lines is nevertheless on offer. 
This is the practical example of solitary waves in liquids of great depth, best known 
as an attribute of the oceanic thermocline. Either the wave motion is concentrated 
around a top or bottom layer, across which density decreases with height but is 
constant far beyond, or i t  is concentrated around an intermediate heterogeneous layer 
below which density has a constant value and above which a smaller constant value. 
An approximate nonlinear theory of periodic and solitary waves in such systems was 
presented by Benjamin (1967) ; and solitary-wave solutions of the approximate 
evolutionary equation (often called the Benjamin-Ono equation ; see B, 93) have been 
proved to be Lyapunov stable in respect of suitably tailored metrics by Bennett et 
al. (1983). Moreover, experimental observations by Davis & Acrivos (1967) have 
indicated that these solitary waves are highly stable, travelling over long distances 
without much change in form. 

So there is good reason to suppose that solitary-wave solutions of the exact 
hydrodynamic problem should exist and be stable, although neither possibility has 
yet been proven. The present theory is ideally suited to this example, which 
exemplifies the Boussinesq model with D taken to be R2 or a half-space. The problem 
seems hard but a worthy objective for further study is indicated. 
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I am grateful to Mr Spencer Bowman for helpful dialogues about several aspects 
of this investigation. Credit is due t o  him for having independently discovered the 
facts noted in Appendix A. 

Appendix A. Semi-Lagrangian equations 
An alternative Hamiltonian representation of the Boussinesq model deserves to be 

summarized. It is superficially simpler in that the complicated operator J introduced 
in (9) and (10) is replaced by a canonical form. But it is more cumbersome in other 
respects and, unlike the representation studied above, it is limited essentially to 
motions in which the height of the isopycnic surfaces is for all x a single-valued 
function of density. 

A semi-Lagrangian description is adopted, as used many times previously (e.g. by 
Benjamin 1967). The independent variables are x, t as before and 7, say, which is the 
height of the isopycnic surfaces in the undisturbed state of the system (or 7 could 
be any parameter determining p uniquely). Thus p = p(7 )  replaces the equation of 
mass conservation (3). The dependent variables are y = y(x, 7, t )  and T = cry,,, where 
u is as defined by (1) although now reckoned as a function of x, 7, t .  In terms of the 
stream function @ as before the velocity components are 

whence it is found that 

say. The y-dependent linear operator M(y) is in fact symmetric and remains strongly 
elliptic provided y,, > 0, as will now be assumed. Therefore, to replace (2), we have 
in principle 

@ = C(Y)T (A 3) 

and the inverse operator C,,, = Mil) incorporating the boundary conditions on @ qua 
function of x, V,I is symmetric. 

The Hamiltonian density is the total-energy density in the domain D C R2 which 
is now assigned the infinitesimal measure dx dv = y;’ dx dy. Thus, relative to a state 
of rest in which y = V,I everywhere, we have 

H = aP(u2+v2)Y,,+s(Y-7)PY,, 

- W++(Y-V,Irl)PY,, = N ( , ) T + g ( Y - V , I ) P Y q ,  (A 4) 

where the equivalence denoted by - is demonstrable from (A 1) and (A 2) by a 
straightforward calculation (cf. (7)). The Euler derivative of H with respect to T is 
plainly C(,) 7 = @, since C(Y) is symmetric. The Euler derivative of H with respect 
to y can be found as the coefficient of y in the infinitesimal variation of H according 
to the first line of (A 4), allowance being made for equivalences and for the condition 

0 = f = - ( P 4 ,  + Y , , ( P ~ ) x - ! I x ( P 4 , ,  + y,,(Pv)x-#x( Wlq 

The two results are 

b , H  = u7-{gy-$(u2+v2)}y, , ,  b , H  = @. (A 5) 
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(A term q(qp)? is omitted from 8, H ,  being a function of 7 alone and so having no 
dynamical significance. ) 

From (A 5 )  the dynamical problem is seen to be represented by the equations 

Yt = - (8, 7t = - (8, H ) ,  . (A 6) 

The first equation is kinematic, following immediately from (3) and the facts that  
p(z, y, t )  = p(7)  and a(z, y)/a(x, q) = y7 > 0. Note that its right side is -$, = v-uy,. 
The second equation is found to  be equivalent to (4) expressed in the new variables. 
These equations exemplify the Hamiltonian form (9) but with a simpler cosympletic 
operator J ,  namely the 2 x 2 matrix with zero diagonal elements and off-diagonal 
elements -ax. Hence upon the introduction of 9 such that 9, = 7 ,  (A 6) may be 
reduced formally to  Hamilton's equations (i.e. yt = d?$ H ,  g5t = - 8 , H ) .  

The Hamiltonian system (A 6) is essentially equivalent to  (9) and appears to 
embody no new information. I ts  symmetries correspond exactly to those of (9) and 
its associated conservation laws are just the transpositions of those for (9) into the 
new variables. It is worth noting the modified forms of the first six symmetries, which 
underlie conservation laws. Let us again write o for the solution, now the column 
vector [y, T ] ~ ,  and P for the standard representative of the infinitesimal generator 
of a one-parameter symmetry subgroup. Corresponding to the first part of Theorem 1,  
we now have P3 = -ot, P4 = -ox, P5 = [ l ,  0IT, P6 = to,+ [0, pJT, P, = [ t ,  - p  y IT, 
P8 = (y+?jgSt2) ox + [x, gtp7+~yXlT.  As regards conserved densities, integrable over an 
unbounded D in the case of a localized wave motion, the first two given in Theorem 4 
are evidently replaced by y-7 and 7. The third is H as expressed by (A 4), and 
the remaining five are the obviously transposed forms of those in Theorem 4. 

7 %  

Appendix B. Confirmation of Hamiltonian structure 
Although the proven property (18) of the operator J given by (10) attests basically 

to the Hamiltonian structure of the Boussinesq system (9), it is desirable to 
summarize a verification of the closure condition as explained by Olver (1980b) in 
the language of differential forms. Appeal can be made to an important result of his 
which simplifies the issue (Olver 1980b, lemma 4.5), and the calculations needed at 
present are comparable with those used by him to confirm one of the several 
Hamiltonian structures attributable to  the dynamical equations for a homogeneous 
perfect fluid (Olver 1982, $3). The essential points are noted as follows without full 
explanation, for which reference may be made to Olver's papers. 

By analogy with canonical Hamiltonian systems, the required condition is that  
the fundamental symplectic two-form 

52 = -+doT A &'do 

should be closed. In  our problem the formal inverse J-' of the matrix of differential 
operators J is not easily defined, however, and so attention is given, rather, to the 
associated cosymplectic two-form 

d = ;doT A J dm = i[dp, da]  A J[dp, daIT 

N p dp, A dU,-p dp, A dux + adax A d a y .  (A 8) 

(Here as before the equivalence - means equality except for a divergence.) According 
to Olver's lemma 4.5, J is Hamiltonian if and only if 

ddd) - 0 (A 9) 
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in the space of three-forms. Here d,, the modified exterior derivative based on J, is 
a linear operation with the properties d J u  = J du,  i.e. 

also dj'd = 0 and the derivation property on forms, giving for example 

dJ(p dpx A d'y) = (dJP) A dpz A dpy* 

Written in full, the result from (A 8) and (A 10) is 

d j (a )  - @zdfly-P,dUx) (dPy AdUz-dPz A day) 

- ( P x  dP, - P y  dPx + U X  da, - dux) A (dux A dqJ9  

in which four of the eight components are null because of duplicated entries in the 
triple cross-product. There remains 

dj(0)  - pz(du, A dPy A dux-+, A dux A du,) 

+p,(da, A dp, A d r y  +dp, A dux A day) = 0. 

Thus the closure condition is confirmed. 
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